IEEE1888-2011
Ubiquitous Green Community Control Network

Hideya Ochiai, Tsuyoshi Momose
Masahiro Ishiyama, Shoichi Sakane
Green University of Tokyo Project
Contents of C&AR

• Background and Purposes (Overview)
• Relevancy
 – reliability, security and efficiency of the Smart Grid
 – grid operations and resources
 – distributed resources and generation
 – demand response, demand-side resources
 – “smart” technologies
 – “smart” appliances and consumer devices
 – ...
• Community Acceptance
• Deployment Suitability
• Interface Characterization
• Document Maintenance
1.1. Overview of the standard

- HTTP/XML communication protocol for
 - facility monitoring / remote control
 - data analysis
 - integration with databases and IT systems
- Interoperable with
 - BACnet, Lonworks, Modbus, ZigBee
 - proprietary systems
- Mainly used for
 - remote energy management
 - remote facility management
- Allow “inter-cloud operation” – data exchange among databases and IT systems (not only facilities)
2.1. Relevancy (Summary)

• Gateway-based efficient integration
 – Integration of any data types (BACnet, Lonworks, …)
• The standard is for customer-side
 – Implementation of DR, dynamic-pricing
 – Scheduling and optimization of electric storage charge control and thermal storage
• Transport-layer security (TLS) (for cyber-security)
 – Detection and disconnection of unauthorized access
 – Access control
• Integration to Cloud (consumer) services
 – Visualization (Web), Alert (E-mail and Twitter)
 – Distributed data management and higher-availability
 – Integration of facilities, databases and IT systems over multiple organizations
2.2. Community Acceptance

- Open source projects of IEEE1888 protocol stack
- Vendor implementations
- Commercial products
- Conformance test tools
- Interoperability testing laboratory
- Education and training programs
2.3. Deployment Suitability

- For Commercial and Industrial (C&I) facilities.
- BEMS aggregator (on going)
 - Integration of thousands of small C&I buildings.
 - 50,000kW demand in total (50kW – 500kW each)
- University campus with PV (new)
 - See “IEEE1888: Application (2/2)”
2.4. Interface Characterization

- HTTP/XML-based protocol (over the Internet)
 - Integration with IT systems (e.g., Database, Web)
- Allow Data Portability among IT systems (with globally unique identifier)

 E.g., Data Storage 1 --(IEEE1888)-- > Web Application 1
 Data Storage 1 --(IEEE1888)-- > Data Storage 2
- Allow Any Data Types
 - BACnet Data Types, Lontalk Data Types, Modbus Data Types, ZigBee, Z-Wave, ...
- Allow Bi-Directional Communication
 - Facility <--(IEEE1888)-- Center (Data Storage)
 - Facility --(IEEE1888)-- > Center (Data Storage)
Appendix
IEEE1888: Application (1/2)
Energy Management in University of Tokyo Campuses

http://ep-monitor.adm.u-tokyo.ac.jp/portal/denryoku

More than 50,000kW is under management
IEEE1888 Application (2/2)

Facility and Energy Management: Tokyo Institute of Technology

It integrates Modbus, BACnet/IP and proprietary systems with IEEE1888.

Cite: http://www.nttdatacs.co.jp/news/20121204.html
IEEE1888 Devices

IEEE1888 Digital Analog Input Device

IEEE1888 GW for BACnet/IP

IEEE1888 Demand Alarm

IEEE1888 Learning Kit

IEEE1888 Open SDK, Stack, Tester

SDK: Software Development Kit

IEEE1888 Stack for Embedded Systems

Conformance Tester