TIA 1194
Surge Resistibility of Smart Grid Equipment Connected to either DC or 120/240 V Single Phase AC and Metallic Communication Lines

Randy Ivans
UL
Chairman TR41.7
2.1 Energy Management Controller

• **Definition:** A set of functions that manage energy consumption as an agent for the customer. Physically, these functions may be embedded in a *residential gateway*, in an appliance, or in a stand-alone device.
2.3 Residential Gateway

• **Definition:** A communications function that interconnects two networks operating with different communications protocols.
A Possible Home Network

- Photovoltaic system
- Antenna
- Surveillance
- NIU
- Telecom
- Power line
- Smart power meter
- Set-top box
- Existing wires [TW, CAT5, Coax]
- These are modems or network interface cards
- Appliance
- Appliance
- Appliance
- CATV
TIA 1194

• Premises equipment that is connected to:
  – one or more metallic conductive communication line(s)
  – a DC power source, or a 120/240 V single phase AC power service with the neutral grounded at the service entrance

• Test procedures

• Resistibility requirements

• Communications ports shall continue to demonstrate basic functionality
TIA 1194

• Examples of equipment with services having separate grounds:
  – smart grid power meter that is connected to the AC power at one side of a building and a communications service at the opposite side
  – roof-mounted photovoltaic system with a communications link to the smart grid
Equipment with 2 Ground Reference Points
Equipment with 2 Ground Reference Points

• The equipment is referenced on the AC side to point B
• The equipment is referenced on the signal side to point A
• A lightning strike can develop a large potential difference between point A and point B
• With a 3000 A surge and a 9 meter (~30 foot) long ground connection between A and B, the voltage developed in wire A–B is ~10,000 V
Equipment with 2 Ground Reference Points

This is enough voltage difference to flash over most ordinary insulating barriers in the equipment, with equipment damage likely to result.
6kV, 3kA Combination Wave

Figure 4. Generic equipment with AC or DC power and various communications inputs. Test set-up to verify a common service ground connection.
6kV, 3kA Combination Wave

Figure 5. Generic equipment with AC or DC power and various communications inputs. Test set-up to verify robustness to a power port surge.
6kV, 3kA Combination Wave

Figure 6. Generic equipment with AC or DC power and various communications inputs. Test set-up to verify robustness of one communications port to surges on another communications port.
Ground Potential Rise (GPR)
Signal Lines Grounded at Remote Site – Ground Potential Rise (GPR)

- Communications cable with metallic conductors
- Fault current flowing from Site A to Site B due to a lightning GPR at Site A
- $Z_{gb}$
- $Z_{ga}$
- $I_L$
Figure 7. Effect of a lightning strike on equipment with a communications line connected to a remote ground
Questions ?