Suggestion for Priority Use Cases for PAP 14

Nokhum Markushevich
Smart Grid Operations Consulting
n.markushevich@smartgridoperations.com
Criteria for Prioritization

• Select a small number of transmission operations functions which have:
 a. Significant cross-cutting needs
 b. Are architecturally significant, i.e.
 • Involve most of the actors
 • Require critical performance characteristics
Background Information

- Smart Grid Focused Use Cases for Transmission and Distribution Operations, presented to TnD DEWG at the Connectivity Week

- Use Cases Driving the Need for Harmonization, [Available: http://collaborate.nist.gov/twiki-sggrid/bin/view/SmartGrid/PAP14Objective2#Use_Cases_Driving_the_Need_for_H](http://collaborate.nist.gov/twiki-sggrid/bin/view/SmartGrid/PAP14Objective2#Use_Cases_Driving_the_Need_for_H)
Transmission-Distribution-Customer Domains
Bus Load Model for Transmission Operations

Transmission

LTC

Bus Load Model for Transmission Operations

Active Distribution Network

Transmission

LTC

Bus Load Model for Transmission Operations

Transmission

LTC
Aggregated Bus Load Model

- With DER and ES
- External Signals

Total Load
- After VVWC
- Demand Response
 - Under-frequency load shedding
 - Under-voltage load shedding
- Curtailment

• This information should be generated by DMS and should be made available to EMS
Suggested Transmission Use Cases with Significant Cross-Cutting over T-D-C domains
Bus load forecast (modeling)

Relation to Distribution Domain:

- Depends on DER operations, schedules, reserves, reactive power capabilities and control modes
- Depends on Demand Response status and capabilities
- Depends on aggregated load-to-voltage dependences (including reactions of DER, capacitors, and VR)
- Depends on actual setups of DER protection, and RAS in distribution
Relation to Distribution Domain:

- Uses the bus load forecasts (models)
- Includes state of controlling devices in distribution (aggregated)
- Uses the results of DOMA for dynamic voltage limits required by distribution operations
- Includes Network Sensitivity Analysis for use by DMS applications
- Includes contingency analyses with the reactions and controls of load management and DER in distribution
Optimal Power Flow and Security Constraint Dispatch

Relation to Distribution Domain:

- Takes into account the dynamic limits imposed by distribution
- Includes real and reactive load management in distribution
- Includes dispatchable DER
Prevention and mitigation of Wide-Area Contingencies

Relation to Distribution Domain:

- Uses bus load models
- Includes requirements for distribution support of secure operating conditions, e.g., load relief, voltage support
- Includes pre-arming and re-coordination of RAS, taking into account distribution operations
Restoration after contingencies

• Relation to Distribution Domain:
 ➢ Includes return of DMS functions to normal operations, based on near-real-time situation in transmission and generation
 ➢ Includes restoration of load reduced by Demand Response, based on near-real-time situation in transmission and generation
 ➢ Includes restoration of loads shed by load-shedding schemes, based on near-real-time situation in transmission and generation
Further Actions

- Develop use cases for these functions, defining
 - the narratives
 - the actors
 - the information interchanges and their requirements
 - the sequence of actions
- Define the object/data models
- Define corresponding standards and gaps
Thank you!