1. **Normal operating conditions** *(including the DER/ES, Demand Response, and interrelationships between the transmission and automated distribution operations)*
 a. Resource planning functions System planning functions
 b. Operation Planning functions
 i. Outage scheduling
 ii. Day(s)-ahead operation planning
 iii. Unit Commitment/Hydro-Thermo Scheduling
 iv. Transaction scheduling
 c. Load forecasting functions
 i. System load forecast
 ii. Bus load forecast
 d. Near real-time generation monitoring functions
 i. Reserve monitoring
 ii. Production cost monitoring
 iii. Evaluation of re-dispatch cost
 iv. Other
 e. Near real-time and real-time generation control functions
 i. Economic Dispatch
 ii. AGC
 iii. Volt/var/Watt control
 iv. Other
 f. Near real-time transmission monitoring functions (Wide Area Situational Awareness)
 i. Topology monitoring (incl. availability of controllable devices)
 ii. Bus load modeling (include Load-to-Voltage and Load–to-Frequency dependences and load management capabilities)
 iii. State estimation (with PMU)
 iv. Dynamic limit monitoring
 v. Network Sensitivity Analysis
 vi. Static contingency analysis
 vii. Dynamic security analysis
 - Angle stability
 - Short-term voltage stability
 - Frequency stability (Generation-load mismatch)
 - Slowly developing voltage stability
 viii. **Cyber Security Contingency Analysis**
 ix. Intelligent alarm processing
 x. Other
 g. Near-real-time transmission optimization functions
 i. Optimal power Flow (including load management means in distribution)
 - Loss minimization
 - Cost of energy minimization
 - Locational Marginal Price minimization (Congestion management)
 ii. Security Constraint Dispatch
 h. Real-time transmission control functions
1. Distributed Intelligence control functions (localized control with overrides and arming)
 ii. Close-loop combined OPF (including aggregated controls of means in distribution)
 i. Post mortem analyses of transmission operations.

2. Emergency Operating Conditions (including the DER/ES, Demand Response, and interrelationships between the transmission and automated distribution operations)
 a. Protection functions based on local information
 b. Emergency control functions based on local information
 c. Data gathering functions for post mortem analyses
 i. Event recording
 ii. Transient processes recording
 iii. Gathering static data on substation/generator level
 iv. Gathering static data on generation, transmission and distribution system levels (includes DER)
 v. Gathering static data on inter-utility level
 vi. Gathering static data on customer level
 d. Post mortem analyzing functions on substation level
 e. Post mortem analyzing functions on system level
 f. Post mortem analyzing functions on inter-utility level
 g. Near-real time monitoring function
 i. On substation/generator level
 ii. On generation, transmission and distribution system levels
 iii. On inter-utility level
 iv. On customer level in aggregated manner
 h. Near real time pre-arming and re-coordination functions
 i. Relay protection
 ii. Load-shedding
 iii. Generator-shedding
 iv. Fast generator starts based on operational parameters (angle, voltage, frequency, other)
 v. Intentional islanding in transmission
 vi. Intentional islanding in distribution
 vii. System stabilizer
 viii. Voltage, var, and power flow controlling functions
 ix. Distributed generation pre-setting
 x. Demand response pre-setting
 xi. Electric storage enabling pre-setting
 xii. Distributed intelligence schemes in distribution for fault isolation and service restoration
 xiii. Re-coordination of protection in distribution systems
 xiv. Other
 i. Real-time remedial action functions
 i. Load-shedding
 ii. Generator-shedding
iii. Fast generator starts based on operational parameters (angle, voltage, frequency, other)
iv. Intentional islanding in transmission
v. Intentional islanding in distribution (micro-grids)
vi. Distributed generation starts
vii. Demand response enabling
viii. Electric storage enabling
ix. Transmission sectionalizing
x. Voltage, var, and power flow control
xi. Other
j. Real-time restorative functions
 i. Auto-synchronization
 ii. Restoration of shed loads
 • After under-frequency load shedding
 • After under-voltage load shedding
 • After special load shedding
 iii. Reset of distributed generation
 iv. Reset of Demand Response
 v. Reset of electric storage
 vi. Other