Use cases for the Self-healing Grid

Nokhum Markushevich
Smart Grid Operations Consulting
n.markushevich@smartgridoperations.com
www.smartgridoperations.com
12/2/2010
Active Distribution Networks (ADN)

High penetration of:

- Load dependent on
 - Real-time pricing
 - Embedded DER
 - Demand Response
 - PEV
 - Technology
 - Other
- Large DER/ES/MG dependent on
 - Weather
 - Technology
 - Maintenance
 - Price
 - Volt/var control mode and settings
 - Protection settings

- Load Shedding Remedial Action Schemes dependent on
 - Operations of MG (connected – autonomous)
 - Load behavior (see above)
 - Overlapping with other schemes
 - Changing priorities
 - Pre-armed settings
- DMS applications dependent on
 - Objectives
 - Available tolerances
 - Available controls
Aggregated Load of ADN at the End-bus of Transmission Operations

- Significant deviations from conforming (typical, proportional) load shapes
- Significantly changing load-to-voltage dependences due to
 - Embedded DER
 - DER with Volt/Var control capabilities in different modes
 - DER/MG with voltage protection
 - Intermittent operations of DER
 - Changing combinations, mode of operations, and settings of voltage and var controlling devices
 - Demand Response with different PF
- Significantly changing load-to-frequency dependences due to
 - Embedded DER
 - DER/MG with frequency protection
 - Intermittent operations of DER
 - Changing number of DER on-line
 - Different frequency control capabilities

- Short-term predictability (minutes)
Architecturally Critical Information Exchanges for the SHG

• SCADA data
• PMU data
• Data on the behavior of Active Distribution Networks under normal and emergency conditions
Aggregation of Information on ADN in Transmission Bus Load Model (TBLM)

- Aggregated models of
 - Distributed Energy Resources and their behavior under normal and emergency conditions
- Controllable and uncontrollable reactive power resources
- Demand Response and its behavior
- VVWO behavior
- PEV performance
- Aggregated MW and Mvar dependences on voltage
- Aggregated MW and Mvar dependences on frequency
- Dispatchable real and reactive loads via:
 - VVWO
 - Demand Response
 - DER control
 - Emergency Load Shedding
Example
Near-real-time analysis of potential islanding
Pre-arming of Islanding requires

• Prediction of real power balance in the potential island (frequency)
• Prediction of reactive power balance in the potential island (voltage)
 – Islands are formed to minimize the load-generation imbalance
• Prediction of the reaction of the Active Distribution Network (~ 20% of DER, Micro-grids, Demand Response, VVWO, etc.)

➤ Adaptive near-real-time analyses based on
 ➤ Transmission model update
 ➤ PMU data
 ➤ Reaction of the Active Distribution Network
Two-area load-rich potential island (before the separation)

Disconnected
UFLS, UVLS for Sub-Area 1

Connected
G11
G12
Pt-jQ

Area 1
DER1/MG

Load 1

VVWO
DR

Load 2

Area 2
DER2/MG

UFLS, UVLS for Sub-Area 2

Disconnected

Connected
Two-area load-rich island (after the separation)

Disconnected

Connected

G11
G12
Load 1

UFLS, UVLS for Sub-Area 1

DER1/MG

VWVO

DR

P-jQ

G21
G22
Load 2

UFLS, UVLS for Sub-Area 2

DER2 /MG

Disconnected

Connected
Questions to be answered by the analyses of potential islanding

• Is the load-generation imbalance manageable during the island situation?
 – Will DER separate due to frequency or voltage, or both – with or without load?
 – Will the weak tie be overloaded?
 – Is the load shedding sufficient, etc.?
 – Are the priorities of load shedding adequate?
 – How will the situation develop during prolong islanding?
 – What is the latency and the possible contribution of Demand Response and VVWO?
 – What is the risk (uncertainty) factor?

• What re-coordination of protection and RAS would be needed?
Questions to be answered by the analyses of restoration after islanding

• What is the expected cold-load pickup?
• What is the latency and possibilities of DER resynchronization?
• What should be the priorities of load restoration?

➢ The TBLM should contain information that is needed to answer these questions.
Information and control flows

Distribution domain

AMI
DER/ES/MG
DR
PEV
Load model Processor
Topology Processor
RAS
DSCADA

Subst. LTC, Shunts, SVC

TBLM Processor

TBLM

T&G domains

PMU

EMS
SE
CA
SCD
Pre-arm Restoration

………

RAS

DSCADA

Data
Control

T&G devices

Processor

Topology model

Processor

Topology model

Processor

Topology model

Processor

Topology model

Processor

Topology model
Priority Use Cases for Operations of SHG, addressing the cross-cutting over domains

- Creation and updates of Transmission Bus Load Model
- State Estimation
- Contingency Analyses with prioritization based on PMU and TBLM
- Security Constrained Dispatch – for preventive measures
- Pre-arming of Corrective Measures
- Restoration after emergency

Need to use PMU and TBLM
Thank you!