[image: image7.emf]Function

Sub-Function

 Abstract Component #1

 Abstract Component #2

 Abstract Component #3

[image: image8.jpg]
[image: image9.jpg][image: image10.jpg][image: image11.jpg][image: image12.png][image: image1]
[image: image13.emf]

ENTERPRISE

ARCHITECTURE

STANDARDIZATION

Technical Reference Architecture

Table of Contents

41
Introduction

42
Document Conventions

53
Document Set Organization

54
Version Control

65
Purpose

66
Target Audience

67
Scope

78
Goals and Objectives

79
Assumptions

810
Relationship to Other Initiatives

811
Relationship to Formal Architectures

912
Naming Conventions

1113
Technical Reference Architecture Framework

1614
Interface Adapter Architecture

2015
Information Exchange Pattern

2416
Status & Error Processing

2517
Glossary

3018
References

31Appendix A: Version History

List of Figures

12Figure 1 Framework Organization

13Figure 2: Architecture Framework

17Figure 3: Comparison of the IEC 61968 Interface Profile with ITC EAS

19Figure 4: Compliant vs. Non-Compliant Applications

21Figure 5: Synchronous vs. Asynchronous Communications

24Figure 6: Visual representation of defined Exchange Patterns

1 Introduction

The Independent System Operator (ISO) / Regional Transmission Organization (RTO) community has come under increasing pressure to implement and operate complex regional bulk power markets while simultaneously maintaining high levels of system reliability.

Gestalt, LLC in a FERC-sponsored report in 2005 stated:

Power System Operations (PSO) organizations can reduce initial and on-going support costs, enable reuse and ensure interoperability by designing applications that incorporate common and open architectures, protocols and platforms, and take advantage of standard technologies to avoid customization. Applications development and integration costs can be significantly reduced through the use of open architectures and technology standards. Industry stakeholders realize this and have begun working together to develop reference architectures, standard data definitions and common data transfer protocols.

In March 2006, the ISO/RTO Council
 (IRC) launched an Enterprise Architecture Standardization (EAS) task force to create a formal Technical Reference Architecture and supporting standards that ISO/RTO members will publicly endorse and commit to implement. The commitment to implement the architecture should act as a catalyst for creating standard compliant applications, ultimately minimizing software implementation and integration costs.

2 Document Conventions

The key words "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", and "MAY" in this document are to be interpreted as follows: [RFC2119]

SHALL

Required

SHOULD
Recommended (with exceptions documented)

MAY

Optional

SHOULD NOT
Discouraged (with exceptions documented)

SHALL NOT
Prohibited

DISCLAIMER:

Throughout this document the terms "web service" are used when referring to service oriented aspects of this architecture. This architecture and related standards use these terms to convey a clear and accurate understanding of Service Oriented concepts and semantics as defined by the W3C, a recognized authoritative source of Service Oriented Architecture. These terms are not intended to imply the use of any specific W3C technology when implementing services. Implementers are NOT required to implement any specific W3C web services technology in order to comply with these specifications. The Web Services Description Language (WSDL) is used strictly as a formal expressive language to accurately document service interfaces.

3 Document Set Organization

This effort will create the following document types:

The Technical Reference Architecture (the “Architecture”) defines over-arching concepts including naming conventions, interface and adapter concepts, allowable message exchange patterns, and rules for status reporting and error handling.

Accompanying the Technical Reference Architecture will be a set of Service Specifications that define specific business data elements, interaction patterns, and allowed status and error modes for a variety of common component interactions. The Service Specifications will be a combination of descriptive documents and technical specifications in the form of Web Services Description Language (WSDL) and XML Schema Definition (XSD) templates. Abstract Component Descriptions are a set of descriptive documents that map the Services to the Abstract Components, adding application-specific features such as error modes not related to Services. There is also a version control document named EAS Profile, that lists the versions of the Technical Reference Architecture, all Abstract Components, and common resources for each Profile version.
4 Version Control

All recommended changes to any published document must be proposed to and approved by the EAS Task Force, which will control the publication of all documents. The EAS may choose to release version of the Service Specifications and/or Abstract Component Descriptions without changing the Architecture.

Versions are identified using a triplet: MAJOR.MINOR.EXTENSION, with Extensions as optional. Major releases including important conceptual changes to the Architecture. Minor releases are intended to be used for corrections, errata, and changes not sufficiently significant to necessitate a major release. The extension attribute is optional and indicates changes made outside the EAS Task Force. Extensions should consist of an alphabetic code identifying the organization plus a version number, for example ABC5.

All artifacts packaged in the Service Specification, i.e. the WSDLs and XSDs, SHALL be versioned with the same version identifier as the Service Specification. Shared resources will be versioned separately. Any version change to a Service Specification implies a version change for all Abstract Component Descriptions that reference that service. A Service Specification or Abstract Component version change does not necessarily dictate a profile revision. Such changes would be incorporated into the next profile.
Technical Reference Architecture

5 Purpose

This document describes the architectural guidelines and supporting standards which, when properly applied will result in a complaint solution.

It is expected that compliance with the Architecture and accompanying specifications will be a mandatory requirement in future software acquisitions. A vendor MAY achieve compliance through either of two approaches:

1. A fully compliant application which implements these standards

2. A non-compliant application which uses an “adapter” to implement these standards

Both of the above approaches are prescribed within this document.

6 Target Audience

· ISOs, RTOs, and utilities
· Software vendors
· Energy industry consultants and analysts
· Systems integrators
· Standards development organizations
7 Scope

The Architecture and its supporting standards focus on integration requirements for Functions defined in the Architecture Framework (Figure 2). Activities which are not closely related to these Functions are considered out of scope. Areas that are considered out of scope include, but are not limited to:

· Human Resources and Company Administration
· Legal
· Communications
· Finance
· Market Monitoring
· Audit
· Long Term System Planning
· IT Security
· Project Management
· Customer Service & Training
There are security considerations associated with the Architecture; however, these are implementation dependent and are therefore considered out of scope.

8 Goals and Objectives

1. Identify the core set of in-scope Business Functions, Sub-Functions, Abstract Components, and Services

2. Define interoperability standards for selected applications within the Reliability and Market Functional areas to serve as a model for all future development.

3. Define an extendable standard to enable business activity monitoring and logging across all Functions

4. Attain a commitment to implement the Architecture from the ISO/RTO Community

5. Develop a repeatable process for evaluating software solutions against the Architecture guidelines.

6. Collaborate with software vendors, industry analysts, and the consulting community in the development and adoption of the Architecture and standards

7. Pursue formal standardization with an internationally recognized standards body

8. The Architecture will be portable in two levels:

· Across different infrastructures
· Across multiple applications within the enterprise.
9. Promote vendor adoption and ISO/RTO enforcement of the produced standard

10. Coordinate with the Very Large Power Grid Operators (VLPGO) working group’s initiative to develop software design requirements for energy management and market operations solutions.
11. Choose design patterns that can scale to meet industry demands

12. Create an Architecture that can be unambiguously and consistently interpreted

13. Create an Architecture that is maintainable and extensible

14. Support enough modularity to support proper cost estimation

15. Promote a unified Architecture to reduce the amount of software to be designed

16. Promote the following via governance models:

· Reusability
· Use of standard protocols and open standards
17. Integration is at the foundation of the Architecture. The following will be considered:

· Access to legacy systems
· Data independence
· Network independence
18. The Architecture should offer enough flexibility to accommodate the disparate integration needs and provide enough extensibility to customize an implementation

19. The Architecture should propose abstraction layers to promote module independence

20. Leverage existing industry standards and best practices

9 Assumptions

1. Solutions SHALL be implemented in accordance with individual ISO/RTO security requirements.
2. Many systems are part of critical near real-time systems performing critical functions of ISO/RTOs. Therefore it is assumed that most systems operate in real-time or close to real-time and operate 24/7.

10 Relationship to Other Initiatives

It is important to clearly distinguish between the activities of Working Group 2 of the Very Large Power Grid Operators
 (VLPGO), known as EMS Architectures of the 21st Century, and the Enterprise Architecture Standardization project. While these activities share some similar high-level goals, they are largely focused in different (and complementary) areas and are taking different approaches.

The EAS project is addressing the simplification of the integration of system components from multiple vendors; the group plans to submit its work to the IEC for incorporation into the appropriate international standards. This will incorporate other IEC standards (such as CIM) as appropriate and focuses on the information exchange between individual systems components.

Rather than developing new standards, the VLPGO work is directed toward producing a universal, reusable set of technical (not functional) specifications for the individual system components, to be made publicly available for incorporation into solicitations for such software. While it refers to various standards, it will not create a new standard: rather, it is focused on the publication of a common reference document that can form the basis for the evaluation of the technical characteristics for such system components.

The VLPGO activity is focused on the design, performance, and other characteristics of the software components that would be integrated using the work of the EAS project. If both projects are successful, more robust, scalable, and maintainable components will be available for integration using standardized messages and interactions. The VLPGO would include the EAS work (or the standards that result from it) in its specifications, while software that conforms to the VLPGO specifications would be more easily adaptable to incorporate the EAS-developed standard messages.
11 Relationship to Formal Architectures

Within the energy and information technology industries, formal standards bodies, industry consortia, and ad-hoc working groups have developed architectural guidelines and supporting standards. The products of these efforts contain a significant body of knowledge and best practices that have been assembled by some of the world’s experts in these areas. The Architecture will utilize as much of this body of knowledge as is feasible.

In particular, two guidelines were selected because of their complimentary mission, goals, and objectives. Each architecture guideline is considered an “authoritative source” for the areas described below:

	Architecture Guideline
	Authoritative Areas

	IEC 61968 [IEC61986-1]
	Architecture Framework, Interface Reference Model, Interface Profile, Adapter Architecture and related standards

	W3C Web Services Architecture [W3CWSA]
	Service Oriented Architecture taxonomy, ontology, concept model and related standards

IEC 61968

The IEC 61968 series is intended to facilitate inter-application integration, as opposed to intra-application integration, of the various distributed software application systems supporting the management of utility electrical distribution networks. IEC 61968 is relevant to loosely coupled applications with more heterogeneity in languages, operating systems, protocols and management tools. IEC 61968 is intended to support applications that need to exchange data on an event driven basis. IEC 61968 is intended to be implemented with middleware services that broker messages among applications, and will complement, but not replace utility data warehouses, database gateways, and operational stores.
World Wide Web Consortium Web Service Architecture

The Web Services Architecture (WSA) provides a conceptual model and a context for understanding web services and the relationships between the components of this model. The architecture does not attempt to specify how web services are implemented, and imposes no restriction on how web services might be combined. The WSA describes both the minimal characteristics that are common to all web services, and a number of characteristics that are needed by many, but not all, web services. The WSA is an interoperability architecture: it identifies those global elements of the global web services network that are required in order to ensure interoperability between web services.

12 Naming Conventions

A naming convention describes how names are formulated. The naming conventions contained in this section SHALL ensure the consistent semantic, syntactic, and lexical characteristics of names relating to services, data elements, and many other “concepts” contained in this document.

General Rules

· Each named entity (e.g. service, data element, etc.) SHALL be unique

· Any name MAY include an acronym provided the acronym is unique and whose full description is provided within a normative section of these specifications

· Names SHALL be descriptive enough to convey a reasonable level of understanding but not so large in size as to be burdensome to programmers and other users (e.g. BirthDate versus MonthDayAndYearPersonWasBorn)

· The names of each named entity SHALL adhere to XML V1.0 [XML-3] syntactic constructs for a Name (ref: section 2.3 and see excerpt below).
· Names SHALL contain only alphanumeric characters using UTF-8 encoding.

· International System of Units (SI) SHALL be used for all units of measure
Rules for Naming Data Elements
· Data Element names SHALL begin with a letter

· There are two types of data elements covered by these rules: Atomic Data Elements and Composite Data Elements. Composite data elements are hierarchical entities whose individual sub-components (atomic or composite) SHOULD be identifiable using XPath [XPATH] notation in order to preserve the “context” in which they exist (e.g. /EnergyMarketData/price, /CongestionData/price).

· Composite Data Element Names SHALL follow the UpperCamelCase form.

· Atomic Data Element Names SHALL follow the lowerCamelCase form.

· IEC Common Information Model [IECCIM] names SHOULD be used whenever practical.

· Data Element names SHOULD be constructed from “broadly recognized, industry accepted” terms with an agreed meaning within a normative section (e.g. GeneratingUnit refers to any type of unit capable of generating electricity regardless of fuel type – wind, hydro, nuclear, etc.)

· These rules apply to all data element names that are formally represented or manifested as XML elements and XML attributes.

· Data Element names used within the context of a service SHALL comply with the Web Services Description Language [WSDL20] specifications

Valid Data Element name examples:

	Data Element Name
	Comment

	RTO
	A composite data element describing a Regional Transmission Operator

	mrid
	A resource ID taken from the IEC Common Information Model (CIM)

	startUpCost
	An atomic data element representing the start up cost of a resource in monetary units

Invalid or potentially unacceptable Data Element name examples:

	Data Element Name
	Comment

	:Meter
	Does not start with a letter

	9to5
	Does not start with a letter

	Day Ahead Market
	Not a valid XML name due to whitespace characters

	Betelgeuse
	Not a broadly recognized/accepted term used within the Energy industry

Rules for Naming Services
· Service names SHALL adhere to UpperCamelCase form
· Service names SHALL begin with one of the allowed verbs:
· Broadcast

· Request
· Listen
· Service names SHALL contain one or more concatenated tokens that describe the service. Tokens SHOULD be constructed from broadly recognized, industry accepted terms with a defined meaning (e.g. Curtailment refers to an order to curtail some activity; produces a service named BroadcastCurtailment)

· Service names SHALL comply with the rules specified in the Web Services Description Language [WSDL20] specifications

Other names related to Services, e.g. Interface names, SHALL also follow the above rules

Valid Service name examples:
	Service Name
	Description

	BroadcastSCEDSolution
	A service that published SCED Solution messages

	ListenBAMStatus
	A service that consumes BAMStatus messages

	RequestFinancialAssuranceCheck
	A service that listens for requests to check the credit worthiness of a participant and responds with a result to the requester

Invalid or potentially unacceptable name examples:

	Service Name
	Comment

	MeterReadingService
	Does not start with one of the allowed verbs for the first part of a service name

	Process New Bid
	Invalid use of whitespace characters

	BroadcastOrion
	Token does not contain a broadly recognized term within the energy industry

13 Technical Reference Architecture Framework

The proposed Architecture Framework is based on the concept of a Service Oriented Architecture (SOA). A good definition of SOA from Webopedia.com is “an application architecture in which all functions, or services, are defined using a description language and have invokable interfaces that are called to perform business processes. Each interaction is independent of each and every other interaction and the interconnect protocols of the communicating devices (i.e., the infrastructure components that determine the communication system do not affect the interfaces). Because interfaces are platform-independent, a client from any device using any operating system in any language can use the service.”
Though built on similar principles, SOA is not the same as web services, which indicates a collection of technologies, such as SOAP and XML. SOA is more than a set of technologies and runs independent of any specific technology.

[image: image14.png]The driver for this type of framework to be based upon SOA is that since the services are independent from each other it allows for simpler replacement of the service provider. Services, with their loosely coupled interfaces and typically asynchronous communication patterns allow for easier replacement resulting from the use of open and well defined standard interfaces. Another advantage of a service-based architecture is the easy creation of composite applications.
The Architecture defines the working terms of function, sub-function, and abstract components. (See Figure 1). A function is a high level business descriptor that defines a top-level area of an ISO/RTOs business process model. Markets, reliability and settlements are examples of functions within a typical ISO/RTO. Sub-functions are discreet logical groupings of business functionality that occur within a function. For example, within the Markets function, there could be the energy, ancillary services, and capacity sub-functions that belong to a markets function. Abstract components are the logical grouping of processes to support a sub-function. To have a forward market, the scheduling, real-time, contingency, and LMP abstract components are required. An application provider will provide applications that meet the functionality of one or more abstract components. Abstract components are logically organized into sub-functions and functions as per Figure 2.

Figure 1 Framework Organization
 The Architecture can be divided into three main areas. The first is the application or suite of applications that assist in completing a business function. These are illustrated by the rounded-rectangular boxes. These boxes are the domain of the application provider and contain the application logic, User Interface, and data persistence mechanisms.

The second, and most relevant part of the SOA architecture is the green ”Standard” components. The green boxes represent the standards that describe processes, architecture, and data that will connect the larger collections of services or applications into the enterprise as a whole. The abstract components may be logically or physically grouped into larger applications that can fit an application provider’s existing portfolio. In reality, an application many have one or more services. The services SHOULD reflect a defined business process and represented as well defined XML messages as inputs and outputs, in accordance with the standards defined elsewhere within these documents. The ”Standard” components represent physical application and integration layer services as well as standardized message definitions and messages. These messages will be CIM-based where possible, and extended when needed.

The third layer of the Architecture is the integration layer. This layer is ISO/RTO dependent and not in scope of this project. An SOA architecture will support any integration layer from simple web services to a full fledged Enterprise Service Bus (ESB). The integration layer is responsible for a certain level of functionality that is assumed to be present at the ISO/RTOs.

[image: image2.emf]INTEGRATION LAYER

StandardStandardStandardStandardStandard

StandardStandardStandardStandardStandardStandard

Organization

Organization

 Asset Data

 Management

 Customer Data

 Management

 User Data

 Management

Outage

Scheduling

Outage

Scheduling

 Generation

 Outage

 Scheduling

 Transmission

 Outage

 Scheduling

 Outage Study

Transmission

Scheduling

Transmission

Scheduling

 Transmission Capacity

 Calculation (TTC)

 Open Access Same-

 Time Information

 System (OASIS)

 Tagging

 External Scheduling

Settlements

Settlements

 Congestion Revenue

 Rights and Financial

 Transmission Rights

 Internal Scheduling

 Metering

 Energy Settlements

 Reliability Settlements

Ancillary Service

 Settlements

 Transmission Tariff

 Settlements

 Billing

Shared Services

Monitoring

 Logging

 Business Activity

 Monitoring

Data

Management

 Business Intelligence

 Data Warehouse

 Reporting

 Data Archive / Historian

Visualization

Markets

Energy

 Market Interfaces & Dashboard

 Resource Adequacy Capacity

 Security Constrained Unit Commitment

 (SCUC)

 Dispatch Management

 Security Constrained Economic Dispatch

 (SCED)

 LMP Calculator

Ancillary Services

 Spinning Reserve

Supplemental Reserve

 Reactive Supply & Voltage

 Control

 Regulation & Frequency

 Response

 System Black Start Capability

 Demand Response

Reliability

Modeling

 Operational Model

Grid Operations

 Supervisory Control and Data Acquisition (SCADA)

 Inter-Control Center Protocol (ICCP)

 Capacity Analysis

 Stability Analysis

 State Estimator

 Power Flow / Flowgate Calculation

 Congestion Management Coordination

 Dispatch

 Automatic Generation Control (AGC)

 Resource Performance Monitor

 Contingency Analysis

 Alarm Processing

Capacity

 Capacity Pricing

Forecast

Forecast

 Short-Term Load

 Forecast

 Long-Term Load

 Forecast

 Weather Forecast

Standard

Figure 2: Architecture Framework
	Function
	Sub-Function
	Abstract Component
	Brief Description

	Markets
	Energy
	Market Interfaces & Dashboard
	Collect/disseminate participant market data and market bids/offers

	
	
	Resource Adequacy Capacity
	Apply transmission constraints and verify capacity resource adequacy

	
	
	Security Constrained Unit Commitment (SCUC)
	Schedule units on/off based on security constraints

	
	
	Dispatch Management
	Input / override operational data by the operators

	
	
	Security Constrained Economic Dispatch (SCED)
	Determine dispatchable unit target power output levels

	
	
	LMP Calculator
	Calculate ex-post locational prices

	
	
	Spinning Reserve
	Use market forces to identify spinning reserve resources

	
	
	Supplemental Reserve
	Use market forces to identify supplemental reserve resources

	
	Ancillary Services
	Reactive Supply & Voltage Control
	Use market forces to identify reactive supply and voltage control resources

	
	
	Regulation & Frequency Response
	Use market forces to identify regulation and frequency response resources

	
	
	System Black Start Capability
	Use market forces to identify system black start capability resources

	
	
	Demand Response
	Use market forces to identify load curtailments

	
	
	Capacity Pricing
	Market to guarantee capacity to cover demand requirements

	
	
	Operational Model
	Manage the full network model to support network applications

	
	Capacity
	Supervisory Control and Data Acquisition (SCADA)
	Central system that monitors/controls grid elements

	Energy Management
	Modeling
	Inter-Control Center Protocol (ICCP)
	Exchange time-critical control center data and provide control center support for device control, general messaging, and control of programs.

	
	Grid Operations
	Capacity Analysis
	Real-time reliability assessment often includes reserve requirements

	
	
	Stability Analysis
	Determines thermal and stability limits

	
	
	State Estimator
	Calculate theoretical state based on information collected from grid

	
	
	Power Flow Calculation
	Calculate power flow and voltage on the system

	
	
	Congestion Management Coordination
	Coordinate pricing with neighboring control areas

	
	
	Dispatch
	Deliver setpoints to generation units (non-AGC)

	
	
	Automatic Generation Control (AGC)
	Control generation resources in real-time

	
	
	Resource Performance Monitor
	Monitor generation and demand response resources with regard to performance against dispatch instructions

	
	
	Contingency Analysis
	Identify violations of reliability requirements relative to NERC regulations

	
	
	Alarm Processing
	Monitor and create notifications for relevant SCADA events

	
	
	Asset Data Management
	Manage asset parameters, both physical and market-based

	
	
	Customer Data Management
	Manage customer parameters, such as address, contact info, etc.

	Organization Data Management
	Organization Data Management
	User Data Management
	Drive access rights/authorization, user authentication, and manages profiles

	
	
	Long-Term Load Forecast
	Forecast demand from 7 days to 1 day

	
	
	Short-Term Load Forecast
	Forecast demand from 1 day to 5 minutes

	Forecast
	Forecast
	Weather Forecast
	Predict temperature, wind, humidity

	
	
	Generation Outage Scheduling
	Collect and approve/deny generator maintenance and emergency outages

	
	
	Transmission Outage Scheduling
	Collect and approve/deny grid element maintenance and emergency outages

	Outage Scheduling
	Outage Scheduling
	Outage Study
	Execute power flow studies to verify the feasibility of outage requests

	
	
	Transmission Capacity Calculation
	Calculate of TTC, ATC, AFC, etc. as an input to OASIS

	
	
	Open Access Same-Time Information System (OASIS)
	Collect transmission capacity reservations

	Transmission Scheduling
	Transmission Scheduling
	Tagging
	Identify and schedule external transactions

	
	
	External Scheduling
	Balance tie-flow among Control Areas

	
	
	Congestion Revenue Rights (CRR) and Financial Transmission Rights (FTR)
	Use market forces to hedge transmission constraints

	
	
	Internal Scheduling
	Schedule energy internal to the control-area, a.k.a. bilaterals

	Settlements
	Settlements
	Metering
	Collect revenue quality metering information

	
	
	Energy Settlements
	Determine payment for generation and collection from load for energy in the spot and day-ahead markets

	
	
	Reliability Settlements
	Uplift for local reliability exceptions

	
	
	Ancillary Service Settlements
	Settle ancillary service markets

	
	
	Transmission Tariff Settlements
	Settle activities governed by the Transmission Tariff

	
	
	Billing
	Produce invoices/payment schedule based on settlements results

	Shared Services
	Messaging
	Logging
	Collect status information into a central repository

	
	
	Monitoring
	Correlate logging information

	
	Data Management & Analytics
	Business Intelligence
	Provide OLAP analysis tools for data anywhere in the enterprise

	
	
	Data Warehouse
	Collect historical business data at the enterprise level

	
	
	Reporting
	Supply defined reports, either on-demand or schedule

	
	
	Data Archive / Historian
	Collect compressed operational data

	
	
	Visualization
	Visualize operational data in graphical metaphors

14 Interface Adapter Architecture

General

The adapter architecture described in this section follows a service oriented architecture that is based upon the authoritative architectures of both the World Wide Web Consortium Web Services Architecture [W3WSA] (and supporting standards [WSDL20]) and the IEC 61968 part 1 [IEC61968-1] architecture framework. The layering concepts and definitions contained in sections 4 and 5 of [IEC61986-1] (Interface Architecture and Interface Profile respectively) SHALL serve as authoritative source for the core adapter architecture while [W3WSA] and [WSDL20] SHALL serve as the authoritative source of the service oriented architecture characteristics.

NOTE: Although WSDL2.0 has been chosen as a formal description language for service specifications, there is no requirement expressed or implied that implementers must use web services technology during implementation in order to comply with these standards.

As depicted in [IEC61968-1] there are two logical adapters located between a Component and the Middleware Services, the Component Adapter and the Middleware Adapter. Another layer, identified as Interface Specification, is located between the Component Adapter and Middleware Adapter. A complete diagram of this relationship, as defined by IEC 61968, is shown below:

[image: image3.emf]Component

Component Adapter

Interface Specification

Middleware Adapter

Middleware Services

Communication Services

Platform Environment

Abstract Component

Application Interface

Service Specification

Integration Interface

Integration Layer

Not Prescribed

IEC 61968ITC EAS

Not Prescribed

Figure 3: Comparison of the IEC 61968 Interface Profile with ITC EAS
Within the context of this document the following correlations SHALL be adopted:

	IEC 61968
	ITC EAS

	Component
	Abstract Component

	Component Adapter
	Application Interface

	Interface Specification
	Service Specification

	Middleware Adapter
	Integration Interface

	Middleware Services
	Integration Layer

Application Interface Architecture

The “Application Interface” refers to that portion of the adapter architecture that delineates the “business functions” provided by an application, from the “service interface operations” provided by an adapter. An application interface describes the orderly interaction between an adapter and an application.

All interactions between an application and an adapter SHALL be fully described/documented in human readable form (Adobe PDF, HTML, or Microsoft Word) using a formal definition language (e.g. WSDL, DDL). Included in the documentation will be definitions for all Data Elements.

A compliant application is any piece of software that properly implements these standards as an integral part of the application. In order to achieve compliance with these standards a non-compliant application SHALL utilize an adapter.

NOTE: This is in accordance with Note 1, Section 5.2 of IEC61968-1, which states:

For components that already are profile-compliant, the component adapter is not necessary.

When a non-compliant component is used in the services-environment, at least one component adapter is present for that component to make it profile-compliant. It can also be the case that more than one component adapter is used to make a single component compliant with the services (for example one component adapter for each IEC 61968 series interface specification).

For those components that are non-compliant, each component adapter is custom-made for that specific component because it depends heavily on the architecture and implementation of the component. A component also runs in a specific hardware/operating system (HW/OS) environment. Therefore the triple set component, (set of) component adapter(s) and HW/OS are fully dependent on each other.

The IEC reference to “component adapter” equates to “application interface” within the context of the Architecture. The figure below shows the difference between a Compliant Application and a Non-Compliant Application utilizing an adapter to achieve compliance:

[image: image4.emf]I

N

T

E

R

F

A

C

E

A

D

A

P

T

E

R

I

N

T

E

R

F

A

C

E

A

D

A

P

T

E

R

NON-COMPLIANT

APPLICATION

MAP TO

SPECIFICATION

MAP TO

INTEGRATION

INTEGRATION LAYER

NON-COMPLIANT

INFORMATION

DATA

PROCESSING

INFORMATION

COMPLIANT

APPLICATION

MAP TO

INTEGRATION

INFORMATION

COMPLIANT

INFORMATION

IDENTICAL

INFORMATION

Figure 4: Compliant vs. Non-Compliant Applications
Two terms have been created to describe an application. The terms are compliant and non-compliant. A compliant application SHALL implement these proposed standards. A non-compliant application is one that does not implement the standards.

Applications may meet compliance one of two ways. One way is to natively support the standards within an application. Another way to achieve compliance is to “wrap” an application. Wrapping an application is the process where the application’s interaction with services is provided by a third party piece of software typically called an adapter. This adapter MAY be triggered by another interface other than that of the native application. For example, an application that creates a text file as output can be monitored by an adapter which then takes the text file and incorporates it into the larger process. The adapter typically uses one protocol on the application side such as file system, JDBC, ODBC, and JMS and has the ability to speak multiple protocols on the middleware side such as HTTP, JMS, MQ, and SOAP. The preferred method of SOA enabling an application is to natively service enable it. This reduces application and interface complexities and produces a more reliable application. Wrapping an application extends its flexibility but may decrease its reliability since it is now dependent on an external piece of software for communicating with the enterprise.

Service Architecture

The objective of the Service Architecture is to facilitate interoperability among Abstract Components via Services. A Service provides functions on behalf of an Abstract Component and is manifested as a software program or programs (referred to as “agents” within [W3CWSA]) that work in conjunction with one or more business Functions.
Each Service Specification SHALL be:
a) Declarative with regard to business data elements, information exchange model, status/error information, security (referred to as semantics, operational behavior, status conditions, elements, attributes, operations and operating parameters in IEC61968-1) for all the services that are part of a service interface specification
b) Programming-language neutral

c) Independent of any specific middleware technology
d) Compliant with the naming conventions prescribed elsewhere in this document

Any message definition or service description MAY be extended by an implementer provided that any such extension is properly identified using an XML Namespace [XMLNAME] that is different from that used by this architecture.

Integration Interface Architecture

The Integration Interface Architecture describes the abstract functional characteristics that enable services to perform inter-application interaction via an integration layer. The integration layer should be viewed as a set of technologies used to carry out inter-application communication. The integration interface should be viewed as a liaison that makes it possible for a service to send/receive messages through an integration layer, regardless of the specific technologies employed within the integration layer.

Integration interfaces SHALL strive to support the commonly available integration layer technologies in use at ISO/RTOs. Examples include:
· Message brokers
· Message Oriented Middleware (MOM)
· Hypertext Transfer Protocol (HTTP/HTTPS)
· Message-Queuing Middleware (MQM)
· Enterprise Service Bus (ESB)
· Business Process Management (BPM) Servers
· Relational Databases

· Object Request Brokers (ORBs).
Integration Layer Functionality

The Architecture makes several assumptions regarding features of the integration layer.
The integration layer SHALL support:
a) Reliable communications

b) Defined business service level agreements

c) Defined transaction volumes

d) Message transport characteristics (defined in the Service Specifications)
e) Message Exchange Patterns (see “Information Exchange Pattern”)

15 Information Exchange Pattern

The Information Exchange Pattern (IEP) is the framework used to define each interface operation [WSDL20] in a manner significant to the domain. Each interface operation within the Architecture SHALL be described in a WSDL 2.0 [WSDL20] document which will be part of the Service Specification. The reference setting for the Architecture is the W3C Web Services Architecture (WSA) [W3WSA]. The service oriented model and message oriented model [W3WSA] are the reference models for this section of the Architecture. As the service oriented model is based upon the message oriented model, there should be no discrepancy in the terminology between the two and as such no differentiation is noted here.

The Service Specifications SHALL contain defined message exchange patterns [WSDLADJUNCTS] and features as per WSDL 2.0 [WSDL20]. All components of WSDL 2.0 SHALL NOT be defined for every service operation. Only features that are relevant to the particular business domain of a service operation will be specified. Specification of each feature [WSDL20] is optional within the IEM. The MEP SHALL be defined for every service operation. The MEP defined within the service description SHALL be considered abstract and not a binding requirement on implementation.

Message Exchange Patterns

All defined message exchange patterns [WSDLADJUNCTS] are available to be used within the IEM.
Outbound message exchange patterns are not excluded from the Architecture due to their abstract nature. When implementing, the mirror pattern may need to be specified but will not be detailed in the service specifications. [WSDLPRIMER]

Features

Pending a normative reference of defined features, the Internationalized Resource Identifier (IRI) for each will be noted in the feature for future alignment with defined features. This IRI will be replaced with a normative IRI when available.
Multiplicity

	Feature
	IRI
	Description

	Unicast
	unicast
	This feature defines an operation as having a single target end-point.

	Multicast
	multicast
	This feature defines an operation as having zero to many target end-points. A multicast operation can have a single target end-point, but should be able to handle more or fewer end-points as per the service definition.

Synchronicity

	Feature
	IRI
	Description

	Synchronous
	synchronous
	A synchronous exchange is said to all happen within the same flow of control. This does not imply that only synchronous transports are applicable for synchronous message exchanges provided the synchronous behavior is maintained.

	Asynchronous
	asynchronous
	An asynchronous exchange is said to happen within differing control flows among systems.

[image: image5.emf]System 1System 2

input

output

System 1System 2

input

output

Synchronous CommunicationAsynchronous Comminucation

Figure 5: Synchronous vs. Asynchronous Communications
Reliability

	Feature
	IRI
	Description

	Unreliable
	unreliable
	Message delivery will be attempted to the best efforts, but its delivery is not guaranteed.

	At least Once
	atleastonce
	Message delivery will be made at least once. Duplicate messages may occur.

	Exactly Once
	exactlyonce
	The message will be delivered once and only once per target.

Ordering

	Feature
	IRI
	Description

	Ordered
	ordered
	A interface operation can be defined as being ordered or unordered. This ordering is only in relation to messages associated with the same service. Ordering across services is a choreography that is outside the scope of this document. If the feature is said to be unordered, this feature is omitted. The default behavior is no guaranteed ordering.

Usage & Examples
Combinations of the features and message exchange patterns form common usages that can be recognized by typically used terms. These terms form the basis of the naming conventions detailed elsewhere in this document. Detailed below are some examples categorized by their common terms.

Broadcast

Multiplicity: Multicast

Message Exchange Patterns: Out-Only

The broadcast classification is a service that notifies the enterprise that the data in a business object has changed or a new entity has been created. This is equivalent to a “publish” in the publish/subscribe model. Due to delivery specifics intrinsic in the subscribe action, the requester agent is said to use the corresponding broadcast service for the purposes of the Architecture. A separate subscribe mirror operation will not be defined.

Example broadcast service definition WSDL (with ordering):

<description>

 <interface>

 <operation
 name="xs:NCName"

 pattern="xs:http://www.w3.org/2006/01/wsdl/out-only">

 <documentation />

 <feature ref=”multicast”/>

 <feature ref=”ordered”/>

 <output element=". . ." />

 </operation>

 </interface>

</description>

Request/Reply

Multiplicity: Unicast

Message Exchange Pattern: In-Out

The request/reply classification is typically used to return a collection of data entities. The integration layer can provide indirection as per the domain specifics of the service.

Example request reply service definition WSDL (and reliability of exactly once):

<description>

 <interface>

 <operation
 name="xs:NCName"

 pattern="xs:http://www.w3.org/2006/01/wsdl/in-out">

 <documentation />

 <feature ref=”unicast”/>

 <feature ref=”exactlyonce”/>

 <input element=". . ." />

 <output element=". . ." />

 </operation>

 </interface>

</description>

Listen

Multiplicity: Unicast

Message Exchange Pattern: In-Only

The listen classification is typically used to send data to a collecting system.

Example listen service definition WSDL (and reliability of unreliable):

<description>

 <interface>

 <operation
 name="xs:NCName"

 pattern="xs:http://www.w3.org/2006/01/wsdl/in-only">

 <documentation />

 <feature ref=”unicast”/>

 <feature ref=”unreliable”/>

 <input element=". . ." />

 </operation>

 </interface>

</description>

[image: image6.emf]DESTINATION

ABSTRACT

COMPONENT

DESTINATION

ABSTRACT

COMPONENT

ABSTRACT

COMPONENT

PROVIDES

BROADCAST

SERVICE

BROADCAST

ABSTRACT

COMPONENT(S)

CONSUME

BROADCAST

SERVICE

ABSTRACT

COMPONENT

PROVIDES

LISTEN

SERVICE

ABSTRACT

COMPONENT

PROVIDES

REQUEST

SERVICE

REPLY

ABSTRACT

COMPONENT

CONSUMES

REQUEST

SERVICE

REQUEST

DESTINATION

ABSTRACT

COMPONENT

DESTINATION

ABSTRACT

COMPONENT

ABSTRACT

COMPONENT(S)

CONSUME

LISTEN

SERVICE

LISTEN

Figure 6: Visual representation of defined Exchange Patterns

16 Status & Error Processing
Error and status conditions SHALL be described in detail within the Abstract Component Description and Service Specification documents. Both status and error conditions SHALL be reported using common formats, data element names, and semantics defined within the Architecture.
Error conditions are related to the invocation of services. Each error condition SHALL indicate the circumstances under which a specific error condition occurred. Error conditions SHOULD be captured in a persistent form in order to aid administrators in debugging and problem diagnosis.

Status conditions are related to the overall business function of Abstract Components. Each status condition SHALL indicate the circumstances under which a specific status condition occurred. Status conditions MAY be used to report on any situation (e.g. success, failure, informational) and SHOULD be captured in a persistent form.
17 Glossary

Abstract Component

Logical grouping of processes to support a Sub-Function.
Adapter

Middleware component providing a level of abstraction to connect disparate applications/systems without altering either application’s/system’s natural state.

Application Programming Interface

Interface exposed by a computer system to expose services to other systems and/or to enable data exchange between two disparate systems.

Asynchronous

Asynchronous communication does not require that all parties involved in the communication need to be present and available at the same time
Atomic Data Elements

Atomic data elements are simple data entities that cannot be subdivided into other data elements
Authoritative Source

The standard or definitive reference for the topic
BAM

Business Activity Monitoring is software that aids in monitoring of business processes, as those processes are implemented in computer systems. BAM is an enterprise solution primarily intended to provide a realtime summary of business processes to operations managers and upper management
BPM

Business Process Management refers to activities performed by businesses to optimize and adapt their processes.

Common Information Model (CIM) or (IECCIM)

IEC standard to facilitate configuration information and data exchange amongst network operators.

CamelCase

The practice of writing compound words or phrases where the words are joined without spaces, with each word capitalized within the compound. The name comes from the uppercase "bumps" in the middle of the compound word, suggestive of the humps of a camel. Cases where the first letter is left in lowercase are referred to as lowerCamelCase, while cases where the first letter is capitalized are referred to as UpperCamelCase.

Compliance
Adherence to (EAS proposed) standards.

Composite Data Elements

Composite data elements are hierarchical entities that are made up of two or more atomic data elements
ESB

An Enterprise Service Bus provides an abstraction layer on top of an implementation of an enterprise messaging system which allows the exchange of standardized information between different systems.
eXternsible Markup Language (XML) or (XML-3)
Language providing structured and descriptive means of encoding of data.

Framework

The framework promotes reusable design by defining a set of prefabricated building blocks that can be used, extended, or customized. Each block has a documented standard set of interfaces and interactions to promotes reusable design.
Integration Interface

See Middleware
Integration Layer

See Middleware

Function (Business)
High level business descriptor that defines a top-level area of an ISO/RTO business model. Markets, Reliability, and Settlements are examples of Functions within a typical ISO/RTO business model.
HTTP and HTTPS
Hypertext Transfer Protocol as defined by W3C
IEC

The International Electrotechnical Commission is the international standards and conformity assessment body

IEM

The Information Exchange Model is a XML based metadata registry used to define the exchange of information
IEP
The Information Exchange Pattern (IEP) is the framework used to define each interface operation [WSDL20] in a manner significant to the domain
IRI

The Internationalized Resource Identifier is a generalization of the Uniform Resource Identifier (URI), which is in turn a generalization of the Uniform Resource Locator (URL). While URIs are limited to a subset of the ASCII character set, IRIs may contain characters from the Universal Character Set (Unicode/ISO 10646). Basically, an IRI is the internationalized version of a URI
JDBC

The Java Database Connectivit API is the industry standard for database-independent connectivity between the Java programming language and a wide range of databases

JMS

The Java Message Service API is a Java Message Oriented Middleware (MOM) API for sending messages between two or more clients. JMS is a specification developed under the Java Community Process as JSR 914

LMP

Locational Marginal Pricing or Nodal Pricing is the price of electricity at each node on the electricity network is a calculated "shadow price", in which it is assumed that one additional kilowatt-hour is demanded at the node

MEP

A Message Exchange Pattern is a template that establishes a pattern for the exchange of messages between two communicating parties.

Middleware

Describes a piece of software that allows two or more software applications to connect together so that they can exchange data
.

MOM

Message-oriented middleware is a client/server interoperabilityinfrastructure that increases the , portability, and flexibility of an application by allowing the application to be distributed over multiple heterogeneous platforms
MQ

WebSphere MQ is IBM's Message Oriented Middleware offering. It allows independent and potentially non-concurrent applications on a distributed system to communicate with each other.
MQM

Most Message Oriented Middleware is implemented with queued message store-and-forward capability, that is Message Queuing Middleware
Multicast
Multicast is the delivery of information to a group of destinations simultaneously

ODBC
Open Database Connectivity provides a standard software API method for using database management systems.
ORB

An Object Request Broker is a piece of middleware software that allows programmers to make program calls from one computer to another, via a network

Service Interface Standards

Describes the characteristics of a service required to enable the exchange of information between two or more services. Service Interface Standards may define not only operational compatibility, but may also reference minimally accepted service and/or performance metrics.

Service Oriented Architecture (SOA)

Paradigm for organizing and utilizing distributed capabilities that may be under the control of different ownership domains. SOA provides a uniform means to offer, discover, interact with and use capabilities to produce desired effects consistent with measurable pre-conditions and expectations
.
Service Specification

Specifications that define business data elements, interaction patterns, status modes and error modes for component interactions

SI

Système International d'unités or International System of Units

SOA

An application architecture in which all functions, or services, are defined using a description language and have invokable interfaces that are called to perform business processes. Each interaction is independent of each and every other interaction and the interconnect protocols of the communicating devices (i.e., the infrastructure components that determine the communication system do not affect the interfaces). Because interfaces are platform-independent, a client from any device using any operating system in any language can use the service
Simple Object Access Protocol (SOAP)

Message exchange protocol for XML developed messages commonly found in web services.

Standard Component

A component where the service interface is defined by an authoritative source

Sub-Function

Discreet logical groupings of business functionality that occur within a Function, e.g., within the Function Markets, there could be the Sub-Functions Energy, Ancillary Services, and Capacity that define logical segments of that business unit.
Synchronous

Direct communication, where all parties involved in the communication are present at the same time (an event)
Technical Reference Architecture

Provides a template for a technical architecture, including a common language for ease of understanding and communication. Technical reference architectures may exist at varying levels ranging from coarse-grain to fine-grain and include information up to and/or including service interface guidelines.

Unicast

Unicast is the sending of information packets to a single destination
UTF-8

UTF-8 stands for Unicode Transformation Format-8 is an octet (8-bit) lossless encoding of Unicode characters
VLPGO

A group of Very Large Power Grid Operators that have common issues and challenges and develop strategies to deal with them jointly. This group consists of East China Power Grid Co, North China Power Grid Co., State Grid Corp. of China, Reseau de Transport d’Electricite, Power Grid Corp. of India, Gestore Rete Trasmissione Nazionale, Tokyo Electric Power Co., National Grid Transco, California ISO, Midwest ISO, and PJM
W3C

The World Wide Web Consortium (W3C) develops interoperable documentation (specifications, guidelines, software, and tools) associated with web based technologies. See www.w3c.org
Web Services (WSA) and (W3CWSA)

Software system designed to support interoperable machine-to-machine interaction over a network
. Most often, a Web Services Architecture is used in reference to messages described via WSDL, which are SOAP formatted and leverage XML-based payloads.

Web Services Description Language (WSDL) or (WSDL20)

WSDL is an XML format for describing network services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented information. The operations and messages are described abstractly, and then bound to a concrete network protocol and message format to define an endpoint. Related concrete endpoints are combined into abstract endpoints (services). WSDL is extensible to allow description of endpoints and their messages regardless of what message formats or network protocols are used to communicate
.

XML Schema Definition (XSD)

Describes and allows validation for the structure and data within an XML file. Commonly recognized as superior to previous schema definition languages, XSD has the ability to leverage Namespaces in its validation.
18 References

	[IEC61968-1]
	IEC, Application integration at electric utilities – System interfaces for distribution management – Part 1: Interface architecture and general requirements, 2003-10 First Edition

	[IECCIM]
	IEC, Common Information Model CIM version 10 rev 7; http://www.cimuser.org/Model/CIM10r7/cim.htm

	[RFC2119]
	Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, IETF, March 1997; http://www.ietf.org/rfc/rfc2119.txt

	[W3WSA]
	Booth, D., et al, Web Service Architecture, Wide Web Consortium, 2004-02-11;http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

	[WSDL20]
	Chinnici, R., et al, Web Services Description Language Version 2.0, World Wide Web Consortium, 2006-03-27;

http://www.w3.org/TR/2006/CR-wsdl20-20060327/

	[WSDLADJUNCTS]
	Chinnici, R., et al, Web Services Description Language Version 2.0 Part 2 Adjuncts, World Wide Web Consortium, 2006-03-27;

http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327/

	[WSDLPRIMER]
	Booth, D., et al, Web Services Description Language Version 2.0 Part 0: Primer, World Wide Web Consortium, 2006-03-27; http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/

	[XML-3]
	Bray, T., et al, Extensible Markup Language (XML) 1.0 Third Edition, World Wide Web Consortium, 2004-02-04; http://www.w3.org/TR/2004/REC-xml-20040204/

	[XMLNAME]
	Tim Bray, et al, Namespaces in XML 1.1 (Second Edition), World Wide Web Consortium (W3C), 2006-08-16; http://www.w3.org/TR/2006/REC-xml-names11-20060816

	[XPATH]
	Clark, J., et al, XML Path Language Version 1.0, World Wide Web Consortium, 1999-11-16; http://www.w3.org/TR/xpath

Appendix A: Version History
	Version Identifier
	Comments

	0.8
	Regular Working Draft

	1.0
	Addition of some clarification based on solution provider feedback, including changes to figure 3 and addition of figure 6, plus merging of Goals with Guiding Principles sections.

Figure 1 Framework Organization

� An association of the ISOs and RTOs of North America.

� an association of operators of the largest electrical grids in the world.

� The policy statements, architectural guidelines, standards, rules and principles contained in this section, collectively referred to as the “naming conventions”, have been adopted from ISO/IEC International Metadata Standard 11179 [ISO11179-5]. ISO/IEC 11179 is a general description framework for data of any kind, in any organization, for any purpose.

� Wikipedia.org. Retrieved on 2006-08-28.

� Oasis-open.org. Retrieved on 2006-08-21.

� W3.org. Retrieved on 2006-08-23.

� W3.org. Retrieved on 2006-08-21.

Technical Reference Architecture
– 12 –
Version 1.0

Copyright and all other rights reserved by the ISO/RTO Council 2006

