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Introduction

Advanced Distribution Automation applications are based on
near real-time computer-aided models of distribution
operations

The models for advanced DA applications must reflect not only
the current state of the object but also support the look-ahead
states dependent on changing conditions. Hence the models
shall be predictive and adaptable.

The fundamental model for the advanced DA applications is
the power flow/state estimation model down to the
equivalents of the low voltage circuits. 1

The critical results of the power flow are the loading of the
circuit elements and the voltages at the designated buses,
predominantly at the customer terminals.



Background components of TnD Object/Data Models
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Component Errors in Voltage Modeling

 Measurements of the reference voltages

* Modeling the voltage transformation by voltage
regulators and other volt/var controlling devices (e.g.,
bandwidth errors)

* Modeling the voltage drops in the feeder primaries
* Modeling the voltage drops in distribution transformers
* Modeling the voltage drops in the secondary (LV) circuits

» Of the 5 types of errors listed above, the last three are
closely related to the AMI-supported information

“ Assuming random independent component errors, the
composite error is defined as follows:

AVIv =[(AVref)2 + (AVmv)?2 + (AVDdt)2 + (AVDsec)?2] 095



In the most loaded segments the errors in the voltage
drop calculated by DSE do not exceed 0.1% of nominal
voltage
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Example histogram of DT load errors, % of
tr-r KVA, max utilization=70%
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Example histogram of errors in modeling 3-
phase DT voltage drop
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Voltage drop error in three-phase distribution
transformer vs load model accuracy

kvar errors, p.u. of kVA

025 ] 02 [-015] -01 [ -005] O 005 | 01 [ 015 ] 02 [ 0.25
-0.25 -0.43 | -0.20 | 0.02 | 0.25 | 0.476
-0.2 -0.39 | -0.16 | 0.07 | 0.29
< [ 015 -0.35 [ -0.12 | 0.11 | 0.34
=~ -0.1 -0.31 | -0.08 [ 0.15 | 0.38
2 | -0.05 -0.50 | -0.27 | -0.04 | 0.19 | 0.42
& 0 -0.46 | -0.23 [ 0.00 | 0.23 | 0.46
S [0.05 -0.42 [ -0.19 [ 0.04 | 0.27 | 050
o [01 -0.39 | -0.15 [ 0.08 | 0.31
2 [ o015 035 ]| 012 | 0.12 | 0.35
0.2 -0.31 | -0.08 | 0.15 | 0.39
0.25 -0.28 | -0.04 [ 0.19 | 0.42




Voltage drop error in single-phase distribution
transformer vs load model accuracy

kvar errors, p.u. of kVA
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Sample Secondary Circuits
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Equivalent Secondary Circuit
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Example histogram of voltage modeling
error mostly due to the error in LV equivalent
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Assessment of achievable accuracy of VD by
utilizing AMI

MV DT LV

AVD=(0.5"2+0.5"2+0.5"2)*0.5 = 0.87%



Impact of accuracy of models on actual voltage
tolerances
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IMPACT OF MODEL
UNCERTAINTY ON BENEFITS

Examples



Load reduction due to IVVO

Realized benefits in load reduction vs accuracies of control and model
Potential benefits = 3%
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Benefits of accurately determined voltage—critical
nodes with DR (use of AMI for monitoring and controlling DR)

Initial load reduction
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Voltages, p.u.

Lost benefits due to lack of confidence In
secondary voltage models

Impact of conservative bus voltage limit on energy conservation benefits

== Bus voltage

=== Customer voltage
Optimal bus voltage
= Substation load

=
o
©
o
c
9
=
©
8
[%)]
o)
=] ]
) Operator's
== ™= bus voltage limit
0.94 =+ 20 9
0.93 —_— Customer-side
limit
0.92
-+ 10
0.91
0.9
0.89 T e T T e T T T T T e e T e T e e e T T e e T T e T T e e e e e e T e e e T T T T e T e e T e T e e e e e e T e T T T T T T T T T I T T T T I T T T T T T T T T ITTTTTTTTITITTTITTT 0
O 0O ©W O~ ON d ON O M MO T OAN M~MNMLUL < < O WLl MN~IDM>~SLWmW o v
49 o4 Mo 1 YT N BUANN NN NN A A O N A Y N O T T 9
N O© 0O WU O 0O W Lwmw 0O W w 0 O© MmO O O W Wwm 0O WwLw 0O W LWw o O wuw N~
2 Mnm T o d W T O N A0 m T NN ON TN LY R
O O 1 N M < IO 1 © ™~ 0 OO0 4 4 N M) < 10D © © ™~ 0 OO0 O 1 4 N M
I 4 4 94 4 4 4 4 d d d 4 N N N N «

Time of day



FLIR Benefits due to AMI
(fault detection by bellwether meters)
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Impact of model errors on models of transfer
capacity Iimite}b{voltage (5% limit)
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Time of feeder upgrade
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Interfaces between major actors involved in ADA
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Messages through interface 1(ANSI C12-19)

« 37 messages were defined in PAP 8 categorization
of information exchange for the purpose of
supporting DA

« Several messages are not directly or at all covered
by the ANSI C12-19 standard, e.g.,
— Ambient temperature
— Flickers

— Instantaneous vars at the time of maximum watts and
watts at the time of maximum vars (needed for
determining the degree of uncertainty of the models
based on interval measurements)



Conclusions

AMI-supported data and control capabilities may provide significant added
benefits of advanced DA applications.

The extent of the added values due to involvement of AMI capabilities in
DA depends on

= the design of the DA applications,

» the contents of data gathered by the Smart Meters and similar
systems,

» the accuracy of information support by sources other than AMI,
» the accuracy of control actions in the utility.

Most of the information support needed by DA from the AMI systems
does not require direct information exchange between the DA applications
and Smart Meters in near real time.

Advanced procedures for creating adequate adaptive and predictive
models should be developed.

To develop these models, combinations of AMI-supported data with data
obtained from other information systems are needed.



